视觉SLAM笔记(60) 建图

视觉SLAM笔记(60) 建图


1. 概述

建图(Mapping),本应该是 SLAM 的两大目标之一
因为 SLAM 被称为同时定位与建图

之前讨论的都是定位问题,包括通过特征点的定位、直接法的定位,以及后端优化
事实上,在经典的 SLAM 模型中,所谓的地图,即所有路标点的集合
一旦确定了路标点的位置,那就可以说完成了建图

于是,前面说的视觉里程计也好, Bundle Adjustment 也好
事实上都建模了路标点的位置,并对它们进行优化
在这个角度上说,已经探讨了建图问题


2. 用处

SLAM 作为一种底层技术,往往是用来为上层应用提供信息的
如果上层是机器人,那么应用层的开发者可能希望使用 SLAM 来做全局的定位,并且让机器人在地图中导航
例如扫地机需要完成扫地工作,希望计算一条能够覆盖整张地图的路径
或者,如果上层是一个增强现实设备,那么开发者可能希望将虚拟物体叠加在现实物体之中
特别地,还可能需要处理虚拟物体和真实物体的遮挡关系

发现,应用层面对于“定位”的需求是相似的,希望 SLAM 提供相机或搭载相机的主体的空间位姿信息
而对于地图,则存在着许多不同的需求

在视觉 SLAM 看来,“建图”是服务于“定位”的
但是在应用层面看来,“建图”明显还带有许多其他的需求

关于地图的用处,大致归纳如下:

在这里插入图片描述
上图形象地解释了上面讨论的各种地图类型与用途之间的关系
之前的讨论,基本集中于“稀疏路标地图”的部分,还没有探讨稠密地图
所谓稠密地图是相对于稀疏地图而言的
稀疏地图只建模感兴趣的部分,也就是前面说了很久的特征点(路标点)
而稠密地图是指,建模所有看到过的部分

对于同一个桌子
稀疏地图可能只建模了桌子的四个角,而稠密地图则会建模整个桌面
虽然从定位角度看,只有四个角的地图也可以 用于对相机进行定位
但由于无法从四个角推断这几个点之间的空间结构
所以无法仅用四个角来完成 导航、避障 等需要稠密地图才能完成的工作

从上面的讨论中可以看出,稠密地图占据着一个非常重要的位置


参考:

《视觉SLAM十四讲》


相关推荐:

视觉SLAM笔记(59) 相似度计算
视觉SLAM笔记(58) 字典
视觉SLAM笔记(57) 回环检测
视觉SLAM笔记(56) 位姿图优化
视觉SLAM笔记(55) 位姿图


谢谢!

发布了233 篇原创文章 · 获赞 322 · 访问量 296万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览