视觉SLAM笔记(57) 回环检测


1. 回环检测的意义

前端提供特征点的提取和轨迹、地图的初值
而后端负责对这所有的数据进行优化

然而,如果像 VO 那样仅考虑相邻时间上的关联
那么,之前产生的误差将不可避免地累计到下一个时刻,使得整个 SLAM 会出现累积误差
长期估计的结果将不可靠,或者说,无法构建全局一致的轨迹和地图

举例来说,假设在前端提取了特征,然后忽略掉特征点,在后端使用 Pose Graph 优化整个轨迹如图(a)

在这里插入图片描述
由于前端给出的只是局部的位姿间约束,比方说,可能是 x1 − x2, x2 − x3 等等
但是,由于 x1 的估计存在误差,而 x2 是根据 x1 决定的, x3又是由 x2 决定的
以此类推,误差就会被累积起来,使得后端优化的结果如图 (b),慢慢地趋向不准确

虽然后端能够估计最大后验误差,但所谓“好模型架不住烂数据”
只有相邻关键帧数据时,我们能做的事情并不很多,也无从消除累积误差

但是,回环检测模块,能够给出除了相邻帧之外的,一些时隔更加久远的

©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付39.90元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值