视觉SLAM笔记(51) 非线性系统和 EKF

视觉SLAM笔记(51) 非线性系统和 EKF


1. 非线性系统

必须要澄清一点: SLAM 中的运动方程和观测方程通常是非线性函数
尤其是视觉 SLAM 中的相机模型
需要使用相机内参模型以及李代数表示的位姿,更不可能是一个线性系统

一个高斯分布,经过非线性变换后,往往不再是高斯分布
所以在非线性系统中,必须取一定的近似,将一个非高斯的分布近似成一个高斯分布


2. 扩展卡尔曼滤波器

希望把卡尔曼滤波器的结果拓展到非线性系统中来
称为扩展卡尔曼滤波器(Extended Kalman Filter, EKF)

通常的做法是:
在某个点附近考虑运动方程以及观测方程的一阶泰勒展开,只保留一阶项,即线性的部分,然后按照线性系统进行推导
令 k−1 时刻的均值与协方差矩阵为 x^\hat{x}

©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付39.90元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值