视觉SLAM笔记(49) 后端状态估计


1. 误差累积

前端视觉里程计能给出一个短时间内的轨迹和地图
但由于不可避免的误差累积,这个地图在长时间内是不准确的
所以,在视觉里程计的基础上
还希望构建一个尺度、规模更大的优化问题,以考虑长时间内的最优轨迹和地图
不过,考虑到精度与性能的平衡,实际当中存在着许多不同的做法


2. 状态估计的概率解释

觉里程计只有短暂的记忆,而希望整个运动轨迹在较长时间内都能保持最优的状态
可能会用最新的知识,更新较久远之前的状态——站在“久远的状态”的角度上看,仿佛是未来的信息告诉它“你应该在哪里”
所以,在后端优化中,通常考虑一个更长时间内(或所有时间内)的状态估计问题
而且不仅使用过去的信息更新自己的状态,也会用未来的信息来更新自己
这种处理方式不妨称为“批量的”(Batch

否则,如果当前的状态只由过去的时刻决定,甚至只由前一个时刻决定
那不妨称为“渐进的”(Incremental

已经知道 SLAM 过程可以由运动方程和观测方程来描述
那么,假设在 t = 0 到 t = N 的时间内
有 x0 到 xN 那么多个位姿,并且有 y1,…, yM 那么多个路标
按照之前的写法,运动

©️2020 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie 返回首页
实付39.90元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值